EE 508
Homework 2
Fall 2022
Due Friday Sept 16
Problem 1 Obtain all approximating functions with real coefficients that agree in the magnitude squared sense with one with poles at $-1+\mathrm{j} 1,-1-\mathrm{j} 1,-4+\mathrm{j} 8,-4-\mathrm{j} 8$ and with zeros at $2,2+\mathrm{j} 6$ and $2-\mathrm{j} 6$

Problem 2 Which of those approximating functions in Problem 1 are minimum phase?

Problem 3 Some magnitude-squared functions are given below. If a function $T(s)$ exists that agrees with these functions in the magnitude-squared sense, determine it.
a) $\quad \mathrm{H}\left(\omega^{2}\right)=\frac{1+2 \omega^{2}+6 \omega^{4}}{\omega^{8}+2 \omega^{6}+3 \omega^{4}+2 \omega^{2}+16}$
b) $\quad \mathrm{H}\left(\omega^{2}\right)=\frac{1+4 \omega^{4}}{\omega^{6}+2 \omega^{4}+2 \omega^{2}+1}$
c) $\mathrm{H}\left(\omega^{2}\right)=\frac{1+\omega+2 \omega^{2}}{\omega^{4}+2 \omega^{2}+1}$
d) $\quad \mathrm{H}\left(\omega^{2}\right)$ has poles at $-1+\mathrm{j} 1,-1-\mathrm{j} 1,1+\mathrm{j} 1,1-\mathrm{j} 1$, and a double pole at $2+\mathrm{j} 0$ and zeros at $-2+\mathrm{j} 6,2-\mathrm{j} 6,2+\mathrm{j} 6,-2-\mathrm{j} 6$ and a double zero at $-4+\mathrm{j} 0$
e) $\quad \mathrm{H}\left(\omega^{2}\right)$ has poles at $-1+\mathrm{j} 1,-1-\mathrm{j} 1,1+\mathrm{j} 1,1-\mathrm{j} 1,-2+\mathrm{j} 0$ and zeros at $-2+\mathrm{j} 6,2-\mathrm{j} 6,2+\mathrm{j} 6,-2-\mathrm{j} 6$ and a double zero at $-4+\mathrm{j} 0$

Problem 4 Prove or disprove the following theorem:
Theorem: If $\mathrm{H}_{\mathrm{A}}\left(\omega^{2}\right)$ is the magnitude squared approximation of the all-pole transfer function $\mathrm{T}(\mathrm{s})$, then the coefficients of $\mathrm{HA}\left(\omega^{2}\right)$ are all of the same sign..

Problem 5 Obtain the 2,3 order Pade approximation $\mathrm{T}_{\mathrm{P} 23}(\mathrm{~s})$ of the rational fraction

$$
T(s)=\frac{1}{s^{5}+3.2 s^{4}+5.3 s^{3}+5.3 s^{2}+3.2 s+1}
$$

and comment on how good the Pade approximation is by comparing the magnitude response of $\mathrm{T}(\mathrm{s})$ and $\mathrm{T}_{\mathrm{P} 32}(\mathrm{~s})$.

Problem 6 If $\mathrm{R}_{(\mathrm{m}, \mathrm{n})}(\mathrm{s})$ is the Pade approximation of $\mathrm{T}_{\mathrm{A}}(\mathrm{s})$ and $\mathrm{R}^{\prime}{ }_{(\mathrm{m}, \mathrm{n})}(\mathrm{s})$ is the Pade approximation of $\mathrm{H}_{\mathrm{A}}\left(\omega^{2}\right)$ where $\mathrm{H}_{\mathrm{A}}\left(\omega^{2}\right)$ is the magnitude squared function corresponding to transfer function $\mathrm{T}_{\mathrm{A}}(\mathrm{s})$, are $\mathrm{R}_{(\mathrm{m}, \mathrm{n})}(\mathrm{s})$ and $\mathrm{R}^{\prime}(\mathrm{m}, \mathrm{n})(\mathrm{s})$ equal? Either prove this relationship or show why it is not true.

Problem 7

$$
T(s)=\frac{K s \frac{\omega_{o}}{Q}}{s^{2}+s \frac{\omega_{o}}{Q}+\omega_{0}^{2}}
$$

is the basic second-order bandpass
transfer function. Determine the two $3-\mathrm{dB}$ band edges and prove that
a) The magnitude of the gain is a maximum at $\omega=\omega_{0}$
b) The maximum gain magnitude is K
c) The 3 dB bandwidth is ω_{0} / Q
d) The geometric mean of the two $3-\mathrm{dB}$ band edges is ω_{0}

Problem 8

a) What is the minimum value of Q of a pole pair that will result in complex conjugate pole pairs?
b) Derive an expression for the angle of a complex pole relative to the imaginary axis in the s-plane in terms of the parameters ω_{0} and Q

Problem 9

a) Using collocation, determine the 6-th order magnitude-squared approximating function with a fourth-order numerator polynomial that has collocation points ($0,0.00625$), $(1,0.00717),(2.5,0.748),(3.5,2.838),(4.5,0.860),(8,0.169)$
If it exists, determine the corresponding transfer function $\mathrm{T}_{\mathrm{A}}(\mathrm{s})$.
b) Repeat part a) but assume the third point is changed to $(2.5,1.0)$ Comment on the sensitivity to the individual component values

Problem 10

Consider the basic inverting amplifier where the op amp is modeled with a gain function $A(s)=\frac{G B}{s}$. Define $K_{0}=1+\frac{R_{2}}{R_{1}}$.

a) Derive an expression for the frequency dependent gain in terms of the model parameters GB and K_{0}.
b) Derive an expression for the closed-loop gain bandwidth product in terms of GB and K_{0}.

Problem 11. Consider the two designs of a finite gain amplifier shown below.
a) Determine resistor values so that the gain of the two designs is 36
b) If the op amps are modeled with a gain $A(s)=\frac{G B}{s}$ and $G B=1 \mathrm{MHz}$, derive an expression for the 3 dB bandwidth of the two designs and comment on the relative performance.

